雑然データをBIツールにいれてグラフにしてみた

雑然データをBIツールにいれてグラフにしてみた

Clock Icon2023.04.25

この記事は公開されてから1年以上経過しています。情報が古い可能性がありますので、ご注意ください。

こんにちは!データアナリィクス事業本部の武田です。

皆様は、整然データと雑然データという言葉を聞いたことはありますか? なんとなく整然データのほうが綺麗そうで、雑然データは汚そうなイメージですね。 整然データは分析しやすい、これと反対の雑然データは分析にしにくいと言われています。

今日は、分析しにくい雑然データをBIツールにいれてグラフにしたらどうなるのかやってみたというお話です。

(決して雑然データOKという意味ではありません。こういった違いがあることを認識していただいて、データを取り扱ってほしいと願ってこの記事を書いています。はい、結論は「やっぱり整然データで!!」です。)

整然データとは

整然データとは、 個々の値が1つのセルをなす 個々の変数が1つの列をなす 個々の観測が1つの行をなす 個々の観測はユニットの類型が一つの表をなす という条件を満たすデータのことです。

(Hadley Wickham先生が提唱)

ということは、例えば・・・・

複数の値がカンマ区切りで一つのセルの中に入っていたり、 変数が行になってたり、 観測が列になっていたり、 同じ種類の観測が別表にまたがっていたりしたら 雑然データです。

整然データと雑然データの具体例

言葉で書いてあっても、具体的にイメージしにくいと思いますので、Tableauのサンプルスーパーストアのデータを使った具体例でご説明します。

整然データは下記のような状態です。

オーダー年   カテゴリ    売上
2022    事務用品    22294153
2021    事務用品    15420259
2020    事務用品    15880638
2019    事務用品    10127262
2022    家電  26949061
2021    家電  21985133
2020    家電  19268607

雑然データは下記のような状態です。

オーダー年   家具  家電  事務用品
2019    13659370    14084755    10127262
2020    19250324    19268607    15880638
2021    24615557    21985133    15420259

整然データの場合は、カテゴリーの中身が縦にずらっと並んでいます。

雑然データの場合は、カテゴリーの中身が横にずらっと並んでいます。

この雑然データの状態を、私は「横持ちしている」とよく言います。

雑然データは、エクセルでよく見かけます。人間が見てわかりやすい形をしていますね。けれども、BIツールを使って分析するには結構厄介な存在です。どう厄介なのか、実際にやってみます。

BIツールに雑然データを取り込んで可視化できるかやってみた

Tableau、Amazon QuickSight、Looker Studioと3つのBIツールで、折れ線グラフ、構成比の積み上げ棒グラフ、円グラフという3つのグラフで作り比べてみます。

Tableau編

折れ線グラフ

整然データの場合:素直に配置して完成します。

列:オーダー年
行:売上
色:カテゴリ

雑然データの場合:メジャーバリューとメジャーネームを使うという、一工夫が必要です。

列:オーダー年
行:メジャーバリュー
色:メジャーネーム

雑然データの場合、メジャーネームやメジャーバリューを知らないと、単純な折れ線グラフを作ることが難しくなります。

構成比積み上げ棒グラフ

オーダー年ごとに、カテゴリー別構成比を出します。

整然データの場合:素直に配置して完成します。

列:オーダー年
行:売上の合計(合計に対する割合で、表(下)の集計)
色:カテゴリー

雑然データの場合:構成比計算が設定できず、年ごとに100%となるような割合計算ができませんでした。(本来は年ごとに合計100%と一律になるのが正しいですが、そうなりませんでした。)

どうしても構成比のグラフを作りたかったら、データの中で先に構成比を計算しておいてデータを取り込むしかありません。(せっかくTableauで自動計算できる機能があるのに、データの段階で計算させるのは大変無念ですけども。)

円グラフ

オーダー年ごとに、カテゴリー別構成比を円グラフで出します。

整然データの場合:素直に配置して完成します。

列:オーダー年
行:指定なし

雑然データの場合:円グラフを描くことはできるのですが、ツールチップの中で「構成比(%)」を表示することはできませんでした。

どうしても構成比の数字をツールチップに表示したい場合は、データの中で先に構成比を計算しておいてデータを取り込むしかありません。

Tableau編の結果

雑然データを使っても、棒グラフや折れ線グラフは、メジャーネームやメジャーバリューを使うことで可視化できました。 しかし、割合を計算しなければならない場合は雑然データでは一部できないパターンがありました。

Amazon QuickSight編

折れ線グラフ

整然データの場合:素直に配置して完成します。

X軸:オーダー年
値:売上
色:カテゴリ

雑然データの場合

X軸:オーダー年
値:家具、家電、事務用品

構成比積み上げ棒グラフ

整然データの場合:素直に配置して完成します。

X軸:オーダー年
値:売上
色:カテゴリ

雑然データの場合

X軸:オーダー年
値:家具、家電、事務用品

円グラフ

整然データの場合:素直に配置して完成します。

X軸:オーダー年
値:売上
色:カテゴリ

雑然データの場合:円グラフを描くことはできませんでした。

Amazon QuickSight編の結果

雑然データでも、折れ線グラフと構成比の積み上げ棒グラフは問題なく描くことができましたが、円グラフは描くことができませんでした。

Looker Studio編

折れ線グラフ

整然データの場合

ディメンション:オーダー年
内訳ディメンション:カテゴリ
指標:売上

雑然データの場合

ディメンション:オーダー年
指標:家電、家具、事務用品

構成比積み上げ棒グラフ

整然データの場合

ディメンション:オーダー年
内訳ディメンション:カテゴリ
指標:売上

雑然データの場合

ディメンション:オーダー年
指標:家具、家電、事務用品

円グラフ

整然データの場合

ディメンション:カテゴリ
指標:売上

Looker Studioには複数円グラフを並べて表示する機能がありませんでしたので、2022年を指定して表示しています。

雑然データの場合:円グラフを描くことはできませんでした。

Looker Studio編の結果

Amazon QuickSightと同様、雑然データの場合は円グラフは描くことができませんでした。

(注意)オーダー年を単なる数字で「2022」として入力していると、Looker Studioでは数値として認識するので、日付型に直す必要があります。

BIツールに雑然データを取り込んでグラフにしてみた結果まとめ

シンプルな折れ線グラフであれば、雑然データでも可視化できました。しかし、割合を計算する場合にはできないパターンがあり、「雑然データは取り扱いしにくい」という結果になりました。

結論

やはり雑然データは避けるべきですね。

雑然データのデメリットは、今回試したようなBIツールを使ってグラフにできないことがあるだけではありません。運用負荷がかかり続けるというデメリットもあります。

運用の負荷というのは、例えば、今回の事例でカテゴリーを追加した場合、1列追加されるということを意味します。 それをデータベース上でやろうとすると、カラム追加で対応しないといけませんし、 BIツール側もそれに合わせてデータ連携のための設定を見直しして、ダッシュボードを修正してと、かなり手間がかかります。

整然データであれば、カテゴリーが追加されても、特にシステム改修は必要ありません。データ件数が増えるだけです。

今日はあえて雑然データをBIツールに入れてやってみましたが、やはり、「データの持ち方は大事」ですね。

Share this article

facebook logohatena logotwitter logo

© Classmethod, Inc. All rights reserved.